Interface control of electronic transport across the magnetic phase transition in SrRuO3/SrTiO3 heterointerface

نویسندگان

  • S. Roy
  • C. Autieri
  • B. Sanyal
  • T. Banerjee
چکیده

The emerging material class of complex-oxides, where manipulation of physical properties lead to new functionalities at their heterointerfaces, is expected to open new frontiers in Spintronics. For example, SrRuO3 is a promising material where external stimuli like strain, temperature and structural distortions control the stability of electronic and magnetic states, across its magnetic phase transition, useful for Spintronics. Despite this, not much has been studied to understand such correlations in SrRuO3. Here we explore the influence of electron-lattice correlation to electron-transport, at interfaces between SrRuO3 and Nb:SrTiO3 across its ferromagnetic transition, using a nanoscale transport probe and first-principles calculations. We find that the geometrical reconstructions at the interface and hence modifications in electronic structures dominate the transmission across its ferromagnetic transition, eventually flipping the charge-transport length-scale in SrRuO3. This approach can be easily extended to other devices where competing ground states can lead to different functional properties across their heterointerfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly confined spin-polarized two-dimensional electron gas in SrTiO3/SrRuO3 superlattices.

We report first-principles characterization of the structural and electronic properties of (SrTiO3)5/(SrRuO3)1 superlattices. We show that the system exhibits a spin-polarized two-dimensional electron gas, extremely confined to the 4d orbitals of Ru in the SrRuO3 layer. Every interface in the superlattice behaves as a minority-spin half-metal ferromagnet, with a magnetic moment of μ=2.0μ(B)/SrR...

متن کامل

Structural phase transition in epitaxial perovskite films

Three different film systems have been systematically investigated to understand the effects of strain and substrate constraint on the phase transitions of perovskite films. In SrTiO3 films, the phase transition temperature Tc was determined by monitoring the superlattice peaks associated with rotations of TiO6 octahedra. It is found that Tc depends on both SrTiO3 film thickness and SrRuO3 buff...

متن کامل

Strong correlations elucidate the electronic structure and phase diagram of LaAlO3/SrTiO3 interface

The interface between the two band insulators SrTiO3 and LaAlO3 has the unexpected properties of a two-dimensional electron gas. It is even superconducting with a transition temperature, T(c), that can be tuned using gate bias V(g), which controls the number of electrons added or removed from the interface. The gate bias-temperature (V(g), T) phase diagram is characterized by a dome-shaped regi...

متن کامل

Structural, magnetic and electrical properties of SrRuO3 films and SrRuO3/SrTiO3 superlattices.

SrRuO3 films and SrRuO3/SrTiO3 superlattices grown on SrTiO3(001) were studied by structural, magnetic, magnetoresistance and Hall effect measurements. The superlattices showed heteroepitaxial growth with coherent interfaces and a Ru/Ti diffusion region of 1-1.5 unit cells. The resistivity had metallic character above a critical thickness of 3-4 unit cells, becoming insulating below. There was ...

متن کامل

Tunneling electroresistance induced by interfacial phase transitions in ultrathin oxide heterostructures.

The ferroelectric (FE) control of electronic transport is one of the emerging technologies in oxide heterostructures. Many previous studies in FE tunnel junctions (FTJs) exploited solely the differences in the electrostatic potential across the FTJs that are induced by changes in the FE polarization direction. Here, we show that in practice the junction current ratios between the two polarizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015